Courtney PM, Bernstein J, Ahn J. In brief: closed tibial shaft fractures. Clin Orthop Relat Res. 2011;469(12):3518–21.
Article
PubMed
PubMed Central
Google Scholar
Casstevens C, Le T, Archdeacon MT, Wyrick JD. Management of extra-articular fractures of the distal tibia: intramedullary nailing versus plate fixation. J Am Acad Orthop Surg. 2012;20(11):675–83.
Article
PubMed
Google Scholar
Lottes JO. Medullary nailing of the tibia with the triflange nail. Clin Orthop Relat Res. 1974;105:53–66.
Article
Google Scholar
Weller S, Kuner E, Schweikert CH. Medullary nailing according to Swiss study group principles. Clin Orthop Relat Res. 1979;138:45–55.
Google Scholar
Sanders RW, DiPasquale TG, Jordan CJ, Arrington JA, Sagi HC. Semiextended intramedullary nailing of the tibia using a suprapatellar approach: radiographic results and clinical outcomes at a minimum of 12 months follow-up. J Orthop Trauma. 2014;28(Suppl 8):S29–39.
Article
PubMed
Google Scholar
Lang GJ, Cohen BE, Bosse MJ, Kellam JF. Proximal third tibial shaft fractures. Should they be nailed? Clin Orthop Relat Res. 1995;315:64–74.
Google Scholar
Anderson TRE, Beak PA, Trompeter AJ. Intra-medullary nail insertion accuracy: a comparison of the infra-patellar and supra-patellar approach. Injury. 2019;50(2):484–8.
Article
PubMed
Google Scholar
Sun Q, Nie X, Gong J, Wu J, Li R, Ge W, et al. The outcome comparison of the suprapatellar approach and infrapatellar approach for tibia intramedullary nailing. Int Orthop. 2016;40(12):2611–7.
Article
PubMed
Google Scholar
Isaac M, O'Toole RV, Udogwu U, Connelly D, Baker M, Lebrun CT, et al. Incidence of knee pain beyond 1-year: suprapatellar versus infrapatellar approach for intramedullary nailing of the tibia. J Orthop Trauma. 2019;33(9):438–442
Karachalios T, Babis G, Tsarouchas J, Sapkas G, Pantazopoulos T. The clinical performance of a small diameter tibial nailing system with a mechanical distal aiming device. Injury. 2000;31(6):451–9.
Article
CAS
PubMed
Google Scholar
Toivanen JA, Vaisto O, Kannus P, Latvala K, Honkonen SE, Jarvinen MJ. Anterior knee pain after intramedullary nailing of fractures of the tibial shaft. A prospective, randomized study comparing two different nail-insertion techniques. J Bone Joint Surg Am. 2002;84-a(4):580–5.
Article
Google Scholar
Jones M, Parry M, Whitehouse M, Mitchell S. Radiologic outcome and patient-reported function after intramedullary nailing: a comparison of the retropatellar and infrapatellar approach. J Orthop Trauma. 2014;28(5):256–62.
Article
PubMed
Google Scholar
Ryan SP, Steen B, Tornetta P 3rd. Semi-extended nailing of metaphyseal tibia fractures: alignment and incidence of postoperative knee pain. J Orthop Trauma. 2014;28(5):263–9.
Article
PubMed
Google Scholar
Chan DS, Serrano-Riera R, Griffing R, Steverson B, Infante A, Watson D, et al. Suprapatellar versus infrapatellar tibial nail insertion: a prospective randomized control pilot study. J Orthop Trauma. 2016;30(3):130–4.
Article
PubMed
Google Scholar
Fontalis A, Weil S, Williamson M, Houston J, Ads T, Trompeter A. A comparison of anterior knee pain, kneeling pain and functional outcomes in suprapatellar versus infrapatellar tibial nailing. Eur J Orthop Surg Traumatol. 2021;31(6):1143–50.
Article
PubMed
Google Scholar
Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee injury and osteoarthritis outcome score (KOOS)--development of a self-administered outcome measure. J Orthopaed Sports Phys Ther. 1998;28(2):88–96.
Article
CAS
Google Scholar
Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med. 1982;10(3):150–4.
Article
CAS
PubMed
Google Scholar
Dawson J, Fitzpatrick R, Murray D, Carr A. Questionnaire on the perceptions of patients about total knee replacement. J Bone Joint Surg Brit. 1998;80(1):63–9.
Article
CAS
PubMed
Google Scholar
Kujala UM, Jaakkola LH, Koskinen SK, Taimela S, Hurme M, Nelimarkka O. Scoring of patellofemoral disorders. Arthroscopy: the journal of Arthroscopic & Related. Surgery. 1993;9(2):159–63.
CAS
Google Scholar
Keating JF, O'Brien PJ, Blachut PA, Meek RN, Broekhuyse HM. Locking intramedullary nailing with and without reaming for open fractures of the tibial shaft. A prospective, randomized study. J Bone Joint Surg Am. 1997;79(3):334–41.
Article
CAS
PubMed
Google Scholar
Skoog A, Soderqvist A, Tornkvist H, Ponzer S. One-year outcome after tibial shaft fractures: results of a prospective fracture registry. J Orthop Trauma. 2001;15(3):210–5.
Article
CAS
PubMed
Google Scholar
Vaisto O, Toivanen J, Kannus P, Jarvinen M. Anterior knee pain after intramedullary nailing of fractures of the tibial shaft: an eight-year follow-up of a prospective, randomized study comparing two different nail-insertion techniques. J Trauma. 2008;64(6):1511–6.
PubMed
Google Scholar
Song SY, Chang HG, Byun JC, Kim TY. Anterior knee pain after tibial intramedullary nailing using a medial paratendinous approach. J Orthop Trauma. 2012;26(3):172–7.
Article
PubMed
Google Scholar
Tahririan MA, Ziaei E, Osanloo R. Significance of the position of the proximal tip of the tibial nail: an important factor related to anterior knee pain. Adv Biomed Res. 2014;3:119.
Article
PubMed
PubMed Central
Google Scholar
Leliveld MS, Verhofstad MHJ. Injury to the infrapatellar branch of the saphenous nerve, a possible cause for anterior knee pain after tibial nailing? Injury. 2012;43(6):779–83.
Article
CAS
PubMed
Google Scholar
Dogra AS, Ruiz AL, Marsh DR. Late outcome of isolated tibial fractures treated by intramedullary nailing: the correlation between disease-specific and generic outcome measures. J Orthop Trauma. 2002;16(4):245–9.
Article
CAS
PubMed
Google Scholar
Court-Brown CM, Gustilo T, Shaw AD. Knee pain after intramedullary tibial nailing: its incidence, etiology, and outcome. J Orthop Trauma. 1997;11(2):103–5.
Article
CAS
PubMed
Google Scholar
Obremskey W, Agel J, Archer K, To P, Tornetta P 3rd. Character, incidence, and predictors of knee pain and activity after infrapatellar intramedullary nailing of an isolated tibia fracture. J Orthop Trauma. 2016;30(3):135–41.
Article
PubMed
PubMed Central
Google Scholar
Wilkens KJ, Duong LV, McGarry MH, Kim WC, Lee TQ. Biomechanical effects of kneeling after total knee arthroplasty. J Bone Joint Surg Am. 2007;89(12):2745–51.
Article
PubMed
Google Scholar
Palmer SH, Servant CT, Maguire J, Parish EN, Cross MJ. Ability to kneel after total knee replacement. J Bone Joint Surg Brit. 2002;84(2):220–2.
Article
CAS
PubMed
Google Scholar
Calvert ND, Smith A, Kuster L, Calvert M, Ebert J, Ackland T, et al. The kneeling test is a valid method of assessing kneeling tolerance. Knee Surg Sports Traumatol Arthrosc. 2019;27(11):3705–3712.
Sreekumar K. Suprapatellar versus infrapatellar tibial nail insertion- a prospective, randomised control pilot study. J Evid Based Med Healthcare. 2017;4(45):2765–8.
Article
Google Scholar
MacDonald DRW, Rehman H, Carnegie CA, Tomas-Hernandez J, Johnstone AJ. The Aberdeen weight-bearing test (knee): a new objective test for anterior knee discomfort. Eur J Trauma Emerg Surg. 2020;46(1):93–8.
Article
PubMed
Google Scholar
Yu J, Li L, Wang T, Sheng L, Huo Y, Yin Z, et al. Intramedullary nail versus plate treatments for distal tibial fractures: a meta-analysis. Int J Surg. 2015;16(Pt A):60–8.
Article
PubMed
Google Scholar
Biggs PR, Whatling GM, Wilson C, Holt CA. Correlations between patient-perceived outcome and objectively-measured biomechanical change following Total knee replacement. Gait Posture. 2019;70:65–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biggs PR, Whatling GM, Wilson C, Metcalfe AJ, Holt CA. Which osteoarthritic gait features recover following total knee replacement surgery? PLoS One. 2019;14(1):e0203417.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586.
Article
PubMed
PubMed Central
Google Scholar
Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200.
Article
PubMed
PubMed Central
Google Scholar
Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Bmj. 2016;355:i5239.
Article
PubMed
PubMed Central
Google Scholar
Kristensen MT, Foss NB, Ekdahl C, Kehlet H. Prefracture functional level evaluated by the new mobility score predicts in-hospital outcome after hip fracture surgery. Acta Orthop. 2010;81(3):296–302.
Article
PubMed
PubMed Central
Google Scholar
Parker MJ, Palmer CR. A new mobility score for predicting mortality after hip fracture. J Bone Joint Surg Brit. 1993;75(5):797–8.
Article
CAS
PubMed
Google Scholar
Ryan P. RALLOC: Stata module to design randomized controlled trials. Boston: Boston College Department of Economics; 2011.
Google Scholar
National Health and Medical Research Council. Guidance: safety monitoring and reporting in clinical trials involving therapeutic goods. Canberra: National Health and Medical Research Council; 2016.
Google Scholar
Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the knee society clinical rating system. Clin Orthop Relat Res. 1989;248:13–4.
Article
Google Scholar
Lee WC, Kwan YH, Chong HC, Yeo SJ. The minimal clinically important difference for knee society clinical rating system after total knee arthroplasty for primary osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2017;25(11):3354–9.
Article
PubMed
Google Scholar
Roos EM, Toksvig-Larsen S. Knee injury and osteoarthritis outcome score (KOOS) – validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes. 2003;1(1):17.
Article
PubMed
PubMed Central
Google Scholar
Crossley KM, Macri EM, Cowan SM, Collins NJ, Roos EM. The patellofemoral pain and osteoarthritis subscale of the KOOS (KOOS-PF): development and validation using the COSMIN checklist. Br J Sports Med. 2018;52(17):1130.
Article
PubMed
Google Scholar
Behrend H, Giesinger K, Giesinger JM, Kuster MS. The “forgotten joint” as the ultimate goal in joint arthroplasty: validation of a new patient-reported outcome measure. J Arthroplast. 2012;27(3):430–6.e1.
Article
Google Scholar
Behrend H, Giesinger K, Zdravkovic V, Giesinger JM. Validating the forgotten joint score-12 in patients after ACL reconstruction. Knee. 2017;24(4):768–74.
Article
PubMed
Google Scholar
Hamilton DF, Loth FL, Giesinger JM, Giesinger K, MacDonald DJ, Patton JT, et al. Validation of the English language forgotten joint Score-12 as an outcome measure for total hip and knee arthroplasty in a British population. Bone Joint J. 2017;99-b(2):218–24.
Article
CAS
PubMed
Google Scholar
Herdman M, Gudex C, Lloyd A, Janssen B, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. 2011;20(10):1727–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conner-Spady B, Marshall D, Bohm E, Dunbar M, Loucks L, Khudairy A, et al. Reliability and validity of the EQ-5D-5L compared to the EQ-5D-3L in patients with osteoarthritis referred for hip and knee replacement. Int J Qual Life Aspects Treatment Care Rehabil. 2015;24(7):1775–84.
Article
Google Scholar
Costa ML, Achten J, Griffin J, Petrou S, Pallister I, Lamb SE, et al. Effect of locking plate fixation vs intramedullary nail fixation on 6-month disability among adults with displaced fracture of the distal tibia: the UK FixDT randomized clinical trial. Jama. 2017;318(18):1767–76.
Article
PubMed
PubMed Central
Google Scholar
Achten J, Parsons NR, McGuinness KR, Petrou S, Lamb SE, Costa ML. UK fixation of distal tibia fractures (UK FixDT): protocol for a randomised controlled trial of ‘locking’ plate fixation versus intramedullary nail fixation in the treatment of adult patients with a displaced fracture of the distal tibia. BMJ Open. 2015;5(9):e009162
Mauffrey C, McGuinness K, Parsons N, Achten J, Costa ML. A randomised pilot trial of “locking plate” fixation versus intramedullary nailing for extra-articular fractures of the distal tibia. J Bone Joint Surg Brit. 2012;94(5):704.
Article
CAS
PubMed
Google Scholar
Crossley KM, Bennell KL, Cowan SM, Green S. Analysis of outcome measures for persons with patellofemoral pain: which are reliable and valid? Arch Phys Med Rehabil. 2004;85(5):815–22.
Article
PubMed
Google Scholar
Delgado DA, Lambert BS, Boutris N, McCulloch PC, Robbins AB, Moreno MR, et al. Validation of digital visual analog scale pain scoring with a traditional paper-based visual analog scale in adults. JAAOS Glob Res Rev. 2018;2(3):e088
Kos D, Raeymaekers J, Van Remoortel A, D'hooghe MB, Nagels G, D'haeseleer M, et al. Electronic visual analogue scales for pain, fatigue, anxiety and quality of life in people with multiple sclerosis using smartphone and tablet: a reliability and feasibility study. Clin Rehabil. 2017;31(9):1215–25.
Article
CAS
PubMed
Google Scholar
Haefeli M, Elfering A. Pain assessment. Eur Spine J. 2006;15 Suppl 1(Suppl 1):S17–24.
Article
PubMed
Google Scholar
Bird M-L, Callisaya ML, Cannell J, Gibbons T, Smith ST, Ahuja KD. Accuracy, validity, and reliability of an electronic visual analog scale for pain on a touch screen tablet in healthy older adults: a clinical trial. Interact J Med Res. 2016;5(1):e3-e.
Article
Google Scholar
Sullivan MJ, D'Eon JL. Relation between catastrophizing and depression in chronic pain patients. J Abnorm Psychol. 1990;99(3):260–3.
Article
CAS
PubMed
Google Scholar
Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. Int Soc Biomech J Biomech. 2002;35(4):543–8.
Article
Google Scholar
Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–50.
Article
PubMed
Google Scholar
Muff G, Dufour S, Meyer A, Severac F, Favret F, Geny B, et al. Comparative assessment of knee extensor and flexor muscle strength measured using a hand-held vs. isokinetic dynamometer. J Phys Ther Sci. 2016;28(9):2445.
Article
PubMed
PubMed Central
Google Scholar
Xu H, Jampala S, Bloswick D, Zhao J, Merryweather A. Evaluation of knee joint forces during kneeling work with different kneepads. Appl Ergon. 2017;58:308–13.
Article
PubMed
Google Scholar
Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.
Article
CAS
PubMed
Google Scholar
Onate JA, Starkel C, Clifton DR, Best TM, Borchers J, Chaudhari A, et al. Normative functional performance values in high school athletes: the functional pre-participation evaluation project. J Athl Train. 2018;53(1):35–42.
Article
PubMed
PubMed Central
Google Scholar
Lin H-C, Hsu H-C, Chang C-M, Chiou P-W, Lu T-W. Alterations of kinetic characteristics in step up and over test in patients with anterior cruciate ligament deficiency. J Sports Sci Med. 2010;9(3):472–9.
PubMed
PubMed Central
Google Scholar
Manske RC, Davies GJ. Examination of the patellofemoral joint. Int J Sports Phys Ther. 2016;11(6):831–53.
PubMed
PubMed Central
Google Scholar
Dieu O, Mikulovic J, Fardy PS, Bui-Xuan G, Béghin L, Vanhelst J. Physical activity using wrist-worn accelerometers: comparison of dominant and non-dominant wrist. Clin Physiol Funct Imaging. 2017;37(5):525–9.
Article
PubMed
Google Scholar
Noia G, Fulchignoni C, Marinangeli M, Maccauro G, Tamburelli FC, De Santis V, et al. Intramedullary nailing through a suprapatellar approach. Evaluation of clinical outcome after removal of the device using the infrapatellar approach. Acta Biomed. 2019;90(1-S):130–5.
Google Scholar
Hertzog MA. Considerations in determining sample size for pilot studies. Res Nurs Health. 2008;31(2):180–91.
Article
PubMed
Google Scholar
Avery KNL, Williamson PR, Gamble C, Connell Francischetto E, Metcalfe C, Davidson P, et al. Informing efficient randomised controlled trials: exploration of challenges in developing progression criteria for internal pilot studies. BMJ Open. 2017;7(2):e013537.
Article
PubMed
PubMed Central
Google Scholar
Franke J, Homeier A, Metz L, Wedel T, Alt V, Spat S, et al. Infrapatellar vs. suprapatellar approach to obtain an optimal insertion angle for intramedullary nailing of tibial fractures. Eur J Trauma Emerg Surg. 2018;44(6):927–38.
Article
PubMed
Google Scholar
Freedman EL, Johnson EE. Radiographic analysis of tibial fracture malalignment following intramedullary nailing. Clin Orthop Relat Res. 1995;315:25–33.
Google Scholar
Tornetta P 3rd, Collins E. Semiextended position of intramedullary nailing of the proximal tibia. Clin Orthop Relat Res. 1996;328:185–9.
Article
Google Scholar
Hiesterman TG, Shafiq BX, Cole PA. Intramedullary nailing of extra-articular proximal tibia fractures. J Am Acad Orthop Surg. 2011;19(11):690–700.
Article
PubMed
Google Scholar
Courtney PM, Boniello A, Donegan D, Ahn J, Mehta S. Functional knee outcomes in infrapatellar and suprapatellar tibial nailing: does approach matter? Am J Orthoped (Belle Mead, NJ). 2015;44(12):E513–6.
Google Scholar
Williamson M, Iliopoulos E, Williams R, Trompeter A. Intra-operative fluoroscopy time and radiation dose during suprapatellar tibial nailing versus infrapatellar tibial nailing. Injury. 2018;49(10):1891–4.
Article
CAS
PubMed
Google Scholar
Cazzato G, Saccomanno MF, Noia G, Masci G, Peruzzi M, Marinangeli M, et al. Intramedullary nailing of tibial shaft fractures in the semi-extended position using a suprapatellar approach: a retrospective case series. Injury. 2018;49:S61–S4.
Article
PubMed
Google Scholar
Chen CY, Lin KC, Yang SW, Tarng YW, Hsu CJ, Renn JH. Influence of nail prominence and insertion point on anterior knee pain after tibial intramedullary nailing. Orthopedics. 2014;37(3):e221–5.
Article
PubMed
Google Scholar
Cerqueira IS, Petersen PA, Júnior RM, Silva JS, Reis P, Gaiarsa GP, et al. Anatomical study on the lateral suprapatellar access route for locked intramedullary nails in tibial fractures. Revista Brasileira de Ortopedia (English Edition). 2012;47(2):169–72.
Article
Google Scholar
Gelbke MK, Coombs D, Powell S, DiPasquale TG. Suprapatellar versus infra-patellar intramedullary nail insertion of the tibia: a cadaveric model for comparison of patellofemoral contact pressures and forces. J Orthop Trauma. 2010;24(11):665–71.
Article
PubMed
Google Scholar
Gaines RJ, Rockwood J, Garland J, Ellingson C, Demaio M. Comparison of insertional trauma between suprapatellar and infrapatellar portals for tibial nailing. Orthopedics. 2013;36(9):e1155–8.
Article
PubMed
Google Scholar
Bible JE, Choxi AA, Dhulipala S, Evans JM, Mir HR. Quantification of anterior cortical bone removal and intermeniscal ligament damage at the tibial nail entry zone using parapatellar and retropatellar approaches. J Orthop Trauma. 2013;27(8):437–41.
Article
PubMed
Google Scholar
Bishop J, Campbell S, Eno J, Gardner M. Knee pain after intramedullary nailing of tibia fractures: prevalence, etiology, and treatment. J Am Acad Orthop Surg. 2018;26(18):E381–E7.
Article
PubMed
Google Scholar
Katsoulis E, Court-Brown C, Giannoudis PV. Incidence and aetiology of anterior knee pain after intramedullary nailing of the femur and tibia. J Bone Joint Surg Brit. 2006;88(5):576–80.
Article
CAS
PubMed
Google Scholar
Bhattacharyya T, Seng K, Nassif NA, Freedman I. Knee pain after tibial nailing: the role of nail prominence. Clin Orthop Relat Res. 2006;449:303–7.
Article
PubMed
Google Scholar
Keating JF, Orfaly R, O'Brien PJ. Knee pain after tibial nailing. J Orthop Trauma. 1997;11(1):10.
Article
CAS
PubMed
Google Scholar
Vaisto O, Toivanen J, Kannus P, Jarvinen M. Anterior knee pain and thigh muscle strength after intramedullary nailing of tibial shaft fractures: a report of 40 consecutive cases. J Orthop Trauma. 2004;18(1):18–23.
Article
PubMed
Google Scholar
Labronici PJ, Santos Pires RE, Franco JS, Alvachian Fernandes HJ, Dos Reis FB. Recommendations for avoiding knee pain after intramedullary nailing of tibial shaft fractures. Patient Safety Surg. 2011;5(1):31.
Article
Google Scholar
Stratford PW, Kennedy DM, Woodhouse LJ. Performance measures provide assessments of pain and function in people with advanced osteoarthritis of the hip or knee. Phys Ther. 2006;86(11):1489–96.
Article
PubMed
Google Scholar
Naili JE, Iversen MD, Esbjörnsson AC, Hedström M, Schwartz MH, Häger CK, et al. Deficits in functional performance and gait one year after total knee arthroplasty despite improved self-reported function. Knee Surg Sports Traumatol Arthrosc. 2017;25(11):3378–86.
Article
PubMed
Google Scholar
Mizner RL, Petterson SC, Clements KE, Zeni JA Jr, Irrgang JJ, Snyder-Mackler L. Measuring functional improvement after total knee arthroplasty requires both performance-based and patient-report assessments: a longitudinal analysis of outcomes. J Arthroplast. 2011;26(5):728–37.
Article
Google Scholar
Jacobs CA, Christensen CP. Correlations between knee society function scores and functional force measures. Clin Orthop Relat Res. 2009;467(9):2414–9.
Article
PubMed
PubMed Central
Google Scholar
Hassaballa MA, Porteous AJ, Newman JH. Observed kneeling ability after total, unicompartmental and patellofemoral knee arthroplasty: perception versus reality. Knee Surg Sports Traumatol Arthrosc. 2004;12(2):136–9.
Article
CAS
PubMed
Google Scholar