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Abstract

Background: Current guidelines recommend less aggressive target hemoglobin A1c (HbA1c) levels based on older
age and lower life expectancy for older adults with diabetes. The effectiveness of electronic health record (EHR)
clinical decision support (CDS) in promoting guideline adherence is undermined by alert fatigue and poor workflow
integration. Integrating behavioral economics (BE) and CDS tools is a novel approach to improving adherence to
guidelines while minimizing clinician burden.

Methods: We will apply a systematic, user-centered design approach to incorporate BE “nudges” into a CDS
module and will perform user testing in two “vanguard” sites. To accomplish this, we will conduct (1) semi-
structured interviews with key informants (n = 8), (2) a 2-h, design-thinking workshop to derive and refine initial
module ideas, and (3) semi-structured group interviews at each site with clinic leaders and clinicians to elicit
feedback on three proposed nudge module components (navigator section, inbasket refill protocol, medication
preference list). Detailed field notes will be summarized by module idea and usability theme for rapid iteration.
Frequency of firing and user action taken will be assessed in the first month of implementation via EHR reporting
to confirm that module components and related reporting are working as expected as well as assess utilization.
To assess the utilization and feasibility of the new tools and generate estimates of clinician compliance with the
Choosing Wisely guideline for diabetes management in older adults, a 6-month, single-arm pilot study of the
BE-EHR module will be conducted in six outpatient primary care clinics.

Discussion: We hypothesize that a low burden, user-centered approach to design will yield a BE-driven, CDS
module with relatively high utilization by clinicians. The resulting module will establish a platform for exploring the
ability of BE concepts embedded within the EHR to affect guideline adherence for other use cases.
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Background
Intensive glycemic control is of unclear benefit and car-
ries increased risk for older adults (defined here as 76
years and older) with diabetes [1]. A number of random-
ized controlled trials, including the Action to Control
Cardiovascular Risk in Diabetes (ACCORD) trial [1], the
Action in Diabetes and Vascular Disease: Preterax and
Diamicron Modified Release Controlled Evaluation (AD-
VANCE) trial [2], and the Veterans Affairs Diabetes Trial
(VADT) [3], found that intensive glycemic control was
not protective for macrovascular complications of dia-
betes including myocardial infarction or stroke. These
trials demonstrate the potential for harm with tight gly-
cemic control, notably increased risk of hypoglycemia
[4], and a suggestion of increased all-cause mortality [1].
Older adults are particularly susceptible to harms related
to hypoglycemia in diabetes, including emergent
hospitalization and neurologic complications [5–9]. In-
tensive glycemic treatment may also lead to increased
risk of polypharmacy and adverse medicine interactions
for older adults with multiple chronic conditions [10].

Choosing Wisely guideline for older adults with diabetes
Due to evidence that tight glycemic control in older
adults with diabetes may be medically harmful, in 2013
(revised in 2015), the American Geriatrics Society (AGS)
developed ten Choosing Wisely (CW) guidelines, of
which the third guideline states the following: “Avoid
using medications other than metformin to achieve
hemoglobin HbA1c<7.5% in most older adults; moderate
control is generally better.” [11] Specifically, this guide-
line incorporates the balance between the number of co-
morbidities and life expectancy of older adults to
provide target ranges for glycemic goals. Reasonable tar-
gets include an HbA1c of 7.0–7.5% in healthy, older adults
with long life expectancy; 7.5–8.0% for patients with mod-
erate comorbidity and a life expectancy of less than 10
years; and 8.0–9.0% for patients with multiple comorbid
conditions and a shorter life expectancy [4, 12].
These recommendations build on previous work cat-

egorizing older adults with diabetes into three clinical
groups based on health status [13] and have been endorsed
by numerous expert panels and guidelines [8, 14, 15]. The
target ranges for glycemic control are similar to HbA1c
values that have been associated with the best outcomes
for older adults with comorbid conditions in observational
or modeling studies [16–18]. The American Diabetes As-
sociation (ADA) and others have recommended similar
health status categories related to HbA1c targets in older
adults [8, 14, 15]. Although the ADA guidelines do not
identify less aggressive targets for HbA1c [8], other soci-
eties, including AGS, recommend similar less aggressive
thresholds for glycemic control [15, 19–21].

Despite the CW recommendations, a substantial num-
ber of older adults have intensive glycemic control that
may not be necessary [22–24]. Additionally, older pa-
tients with intensive glycemic control generally do not
undergo de-intensification of therapy, suggesting oppor-
tunity for improving appropriate care [25]. To combat
this problem, the proposed study utilizes a unique ap-
proach: using behavioral economics via electronic health
records to influence provider behavior with respect to
diabetes care for older adults.

Behavioral economics and the EHR
The field of behavioral economics (BE) combines princi-
ples from economics and psychology to recognize the
limitations of the classical economic framework that
views human decision-makers as purely rational actors
[26]. In reality, humans are predictably irrational [27],
making common decision errors that are explicable
through a set of psychological principles, and are there-
fore predictable. Traits contributing to decision errors
include loss aversion, anchoring, overweighting of small
probabilities, present bias, regret aversion, sensitivity to
defaults, and the power of social comparisons [28]. Once
recognized, each of these decision errors can be harnessed
and overcome, often in the form of gentle “nudges” that
make a desired behavior more likely [29–32].
Meanwhile, electronic health records (EHRs) now dom-

inate the landscape, influencing nearly every clinical deci-
sion, workflow, and order placed by health care providers.
Clinical decision support (CDS) is the primary EHR tool
for influencing clinical decision-making and promoting
adherence to clinical guidelines. CDS is an effective tool
for improving provider performance and patient outcomes
[33, 34]. Moreover, best practices for maximizing CDS ef-
fectiveness have been identified [35, 36]. Successful CDS
must deliver accurate information in the right clinical con-
text at the point of care and must be integrated into the
relevant provider’s workflow [37]. Large, systematic re-
views of CDS have demonstrated a moderate ability to re-
duce morbidity, utilization, and costs [34, 38]. These
modest improvements, however, are undermined by the
well-documented problems of alert fatigue and poor work-
flow integration, which together blunt the potential of the
EHR and CDS to improve healthcare outcomes [39].
Integrating behavioral economics strategies and elec-

tronic health records using various CDS tools is a novel
approach to improving guideline adherence that also
seeks to minimize negative impacts on clinical workflow
and cognitive load. For example, Meeker et al. integrated
three BE concepts (suggested alternatives, accountable
justification, and peer comparisons) into the EHR at 50
primary care practices to significantly (~ 5–7%) reduce
inappropriate antibiotic prescribing for upper respiratory
infections [40]. New approaches like these are needed to
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complement the traditional alerts, reminders, and other
CDS tools that disrupt clinical workflow, increase cogni-
tive load, and stress the limited capacity of clinicians to
rationally process and evaluate the diverse and compet-
ing demands on their attention. By leveraging the oppor-
tunity presented by the EHR to combine modalities and
extend the power of BE, this project seeks to develop a
scalable intervention to reduce overtreatment in older
adults with diabetes with minimal negative impact on
clinician workflow or cognitive workload.
The objective of this study is to develop and pilot test a

scalable, EHR customization toolkit that applies behavioral
economic insights to promote appropriate diabetes care in
older adults based on the AGS’s CW guideline to reduce
overtreatment for the benefit of older adults with diabetes.

Methods/design
This study employs a pragmatic, user-centered approach
as illustrated in Fig. 1 to achieve two aims: (1) develop
new BE CDS modules to improve provider adherence to
the CW guideline targeting overtreatment among older
adults with diabetes and (2) test the effectiveness of
these BE CDS modules in a naturalized, clinical setting.

Aim 1: User-centered development of a behavioral
economic-inspired CDS tool
Implementing a user-centered design process, we will in-
corporate behavioral economic approaches into existing
CDS tools and clinical workflows to design, develop, it-
eratively refine, and user-test the module in two “van-
guard” sites.

User-centered design of initial module (aim 1, phase 1)
The development and refinement process for the new BE
CDS modules involves a series of linked steps that have
been successfully used in previous CDS development
studies [41–45]. The process includes user research,
prototyping, and usability testing (see Fig. 1) [46, 47].

These processes will be used to identify or “discover”
candidate BE concepts and potential CDS tools, which
will then be analyzed according to their potential for
workflow integration, their likely impact, and the com-
plexity of their EHR development.

Identification of behavioral economic approaches
and module opportunities and utilization measures
Initially, the BE and CDS literature will be further
reviewed and candidate approaches selected for evalu-
ation by the research team. Based on prior work and the
current literature, Table 1 outlines example BE concepts
and relevant CDS tools to support the implementation
of each BE approach, along with utilization measures
available to assess process outcomes.

Key informant interviews The team will conduct key
informant interviews with BE, CDS, and clinical experts
using a semi-structured interview guide to explore (1)
the potential impact of BE principles and strategies on
improving guideline adherence for diabetes management
in older adults, (2) the functionality of established CDS
tools amenable to implementing the BE approach, (3)
the clinical workflow footprint of the BE CDS nudges,
and (4) how well candidate BE CDS nudges combine
into a modular package of BE CDS tools.

Workflow analysis The team will also conduct a work-
flow analysis adapted from the Agency for Healthcare Re-
search and Quality (AHRQ) recommendations on
workflow assessments [48]. We will conduct short obser-
vations in two selected vanguard clinic locations. The lit-
erature, interviews, and workflow assessments will be used
in generation of the initial prototype BE-EHR module.
Workflows will be validated in a design-thinking

workshop (described below), in follow-up interviews
with key informants, and within-group feedback
meetings with clinicians during user testing. During
these follow-up meetings, any additional workflow

Fig. 1 Process model for user-centered digital development
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variations that the module may need to support will
be identified. Candidate workflows will then be dis-
cussed with the project team and other health system
stakeholders to finalize the optimal workflow integra-
tion approach.

Design workshop After initial key informant interviews
and workflow analysis, a design-thinking workshop will
be held to bring together findings from the interviews
and workflow analysis. The design workshop will feature
a structured, multidisciplinary workgroup composed of
BE experts, CDS developers, relevant clinicians, and the
research team. The sessions will be guided by a
user-centered design facilitation protocol that sequen-
tially leads the group through presentation and idea gen-
eration exercises around relevant behavioral economic
concepts, CDS opportunities, and workflow obstacles
and opportunities. Participants will be divided into small
groups and provided materials and tasks designed to
prompt new thinking on potential nudges. For example,
the “crazy eights” exercise is an exercise in which indi-
vidual team members are directed to draw eight ideas in
8 min. Each participant will be provided opportunities to
“share back” their small group’s ideas as well as provide
feedback on other groups’ ideas.
The primary goal of the workshop is to prompt di-

vergent thinking or “discovery” (see Fig. 1) where par-
ticipants focus on generating as many ideas as
possible, as exemplified by the crazy eights exercise.
Toward the end, the facilitator directs the group to
“define” or converge on the best ideas for more expli-
cit definition and development; to this end, the work-
shop will complete with the whole group voting on
nudge ideas believed to be most promising. The ses-
sion will be video- and audio-recorded, as well as
summarized and converted into recommendations and
revised workflow diagrams.

User testing (aim 1, phase 2)
Prior studies also established a clear link between the
user-centered design process and successful implemen-
tation of clinical decision support tools within the EHR
[49–51]. Upon completion of the design-thinking work-
shop and subsequent development of nudge prototypes,
nudges will be further refined through a tailored,
multi-phase feedback gathering and user testing process
[46]. This pre-clinical testing serves as a clinical laboratory
for building successful workflow-integrated tools with a
high likelihood of adoption and adherence [41, 44, 52]. In
addition to key informant interviews and group interviews
with users as described above, a variety of methods for
collecting both qualitative as well as quantitative user
feedback will be selected. See Table 2 for user research
methodologies to be employed on an as needed basis ac-
cording to fit based on type of module, content, frequency
of clinician “exposure,” and response to the module.

Development of algorithms to determine activation
of CDS In order to build a user-centered CDS tool that
triggers appropriately for the target patient population,
algorithms will be built-in to drive timing and content of
module firings that incorporate both patient life expect-
ancy (high, medium, low) and target glycemic index. A
life expectancy algorithm (based on a scoring approach
used by Quan et al. and prior research by DuGoff et al.)
will be developed by the research team [53, 54]; it will
be used to assign patients to low, medium, and high life
expectancy categories based on patient characteristics
including age, gender, and both the number and type of
comorbidities. Depending on a patient’s life expectancy
categorization, the individual will be assigned a target
HbA1c range according to the specifications stated by
the CW guideline targeting overtreatment of older pa-
tients with diabetes.
Developing an algorithm that accurately predicts life

expectancy using electronic health record data poses

Table 1 Behavioral economic strategies and associated module opportunity examples

BE strategy Module opportunity Utilization measure

Suggest
alternatives [48]

Alert suggests metformin when trying to prescribe other
diabetes medication in CW eligible patient

Percentage of eligible alerts where alternative
is selected

Accountable
justification [48]

Subcomponent of alert asking for justification if prescribing
diabetes medication other than metformin

Percentage of eligible alerts where justification
is provided (vs. only “clicked through”)

Defaults [30, 49] Default all diabetes management order sets to suggest metformin
in eligible patients

Percentage of order sets where clinician changes
the default option

Anchoring [50] Update HbA1c lab reports for CW eligible patients to show less
aggressive treatment goals

Qualitative feedback and percentage of CW
compliant patients pre- and post implementation
update

Peer comparisons/
norming [48, 51]

Modify clinician quality and safety dashboard to visualize diabetes
management peer comparisons with color codes to indicate
relative performance

Number of views of the peer comparison
dashboard

Availability bias [30] Medication preference list prioritizes metformin Number of prescriptions for metformin initiated
from preference list
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challenges. One limitation is that the number and type of
comorbidities recorded in the electronic medical record
may be associated with the length of patient registration
and frequency of visits. This would lead to under-reporting
of comorbidities for some patients, which could lead to a
higher predicted life expectancy categorization and conse-
quential bias toward over-reporting compliance with the
Choosing Wisely guidelines. While we are not able to val-
idate the life expectancy algorithm by obtaining death cer-
tificate data, the peer-reviewed literature that we will
utilize for building this algorithm is well-known and was
created using data sources that verified accuracy using
death certification data or sources directly applicable to
analyzing EHR data. For example, Quan et al. developed a
weighted scoring approach for the comorbidities using
hospital and death certification data, and DuGoff et al. for-
mulated their life expectancy tables assuming chronic con-
ditions using Medicare beneficiary data from a sample of
over 1.3 million patients [53, 54]. Therefore, we are
confident that our adaptation of these algorithms will per-
form well in this setting.
Clinical decisions in accordance with the CW guide-

line will be drafted and approved by clinical experts on
the research team and will guide actions prompted by
text and visuals in the CDS modules. Example clinical
actions include switching a patient’s medication to met-
formin, reducing the dose, or removing the prescription
of an alternative medication for patients with an HbA1c
laboratory value too tightly controlled given their calcu-
lated life expectancy. Once the new module has stabi-
lized within the vanguard sites (workflow issues are
resolved and clinician usage is stable) (aim 1), the tool
will be activated at the pilot sites (aim 2).

Aim 2: Pilot testing the BE-EHR modules (phase 3)
To assess the utilization and feasibility of the new tools
and generate preliminary estimates of clinician compli-
ance with the CW guideline, a 6-month, single-arm pilot
study of the BE-EHR module will be conducted in six
outpatient primary care clinics.

Intervention
The BE CDS module will trigger for appropriate patients
according to the logic built into the module based on
the patient’s age, life expectancy (as calculated by the al-
gorithm described above), and current/target HbA1c.
Based on these characteristics, the CDS may, for ex-
ample, leverage the behavioral economic principle of de-
faults and suggest metformin if appropriate. Otherwise,
the CDS will suggest not adding a new prescription if
the HbA1c is above the lower bound of the target
HbA1c threshold among the three life expectancy cat-
egories (7.0% for healthy patients, 7.5% for those with
moderate comorbidity, and 8.0% for those with a shorter
life expectancy [4, 12]). The CDS will suggest stopping
or reducing the medication dose if the HbA1c is below
the lower bound of the target HbA1c target threshold
per life expectancy category, as that would indicate the
patient’s HbA1c is being too tightly controlled. The BE
CDS module (see Table 1) will be activated at the system
level for all relevant diabetes EHR components. For ex-
ample, a diabetes order set tailored to older adults might
have default medications updated to be metformin and
to reflect the CW-recommended glycemic targets for
calculated life expectancy.

Setting and population
The New York University Langone Medical Center
(NYULMC) primary care practices serve patients with a
diverse range of socio-demographic characteristics; they
range from faculty-based practices with predominately
privately insured and/or Medicare patients to Federally
Qualified Healthcare Centers with a large Medicaid
population (see Table 3). For the pilot study, four prac-
tices will be recruited, purposely chosen to reflect key
practice setting characteristics (number of full-time pro-
viders, depth of support staff, transition to medical home
model, insurance mix, patient socio-demographics).
Eligible patients within the practice sites will be those

aged 76 or older with a diagnosis of diabetes. Patients
will be categorized into one of the three glycemic target

Table 2 Possible research methods for user testing

User testing methods Description Predicted frequency and time point

Key informant
interviews

Semi-structured interviews with individual or small group (2–3) experts in primary care,
geriatrics, EHR, diabetes, and other relevant fields

6–8 informants, 1–2
interviews each

Group interviews Semi-structured interviews with groups of 4–6 clinicians Pre- and post vanguard

“Ride along”
observation

Individual observation session of clinician interaction with EHR real time, in situ 6–8 sessions per
vanguard and pilot

Think-aloud usability
testing [53]

Individual observations in “lab” of clinicians verbalizing all thoughts as they interact
with the module following a carefully scripted series of EHR tasks

4–6 observations as
needed in pilot

Near live [50, 53, 55] Individual observations in “lab” of clinicians interacting with simulated data and patient
actors to realistically model clinical use of module

4–6 observations as
needed in pilot

Live [51, 56] Individual observations of clinicians in situ using the tool in actual patient care 3 observations as
needed in pilot
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ranges inspired by the CW recommendation: (1) healthy
older adults with an HbA1c target range of 7–7.5% and
long life expectancy (defined here as 10+ years); (2)
those with moderate comorbidity and a life expectancy
of 3+ to 10 years, with a target range of 7.5–8%; and (3)
those with multiple comorbidities and life expectancy of
less than or equal to 3 years, with a target range of 8–9%
[4]. These categories are determined using the life ex-
pectancy algorithm described earlier. We expect the ma-
jority of patients in the selected population to fall into
the “high life expectancy” category (10+ years), as the
average life expectancy of a 75-year-old is between 11
and 12 years [53], and about two thirds of patients in the
Medicare population have multiple chronic conditions
[54–57]. Twenty percent of the population is estimated
to be moderately healthy older adults with a medium life
expectancy, and 10% are estimated to have an end-stage
illness, leading to low life expectancy.

Outcomes
Pilot study outcomes will measure implementation as
well as provide initial estimates of the BE-EHR modules’
effectiveness.
Process outcomes include utilization, measured via the

EHR, such as the percentage of alerts in which the clin-
ician changes the default option. Other outcomes are
noted in Table 1. We will also collect qualitative user
feedback using user research methods deemed most ap-
propriate (see Table 2) to understand clinicians’ experi-
ence with the BE-EHR module and evaluate the specific
nudges, as well as explore acceptability, implementation,
and adoption issues surrounding them, including asses-
sing their impact on guideline-focused care for older
adults with diabetes.
The primary clinical outcome is the percent of eligible

patients who are compliant with the AGS CW guideline
targeting overtreatment of older adults with diabetes.
For each patient, the HbA1c level, diabetes medication
prescription status, and life expectancy status will be de-
termined. All patients whose HbA1c are within the tar-
get range for their life expectancy status will be
considered compliant. Those whose HbA1c are below

the target range and who are being treated with a
non-metformin agent (i.e., are over-controlled) will be
deemed non-compliant. If an eligible patient is on met-
formin only but the HbA1c is below the upper board of
the target range, they will also be deemed non-compli-
ant. These situations are delineated in Table 4.
Patient-level compliance outcomes will be aggregated to
produce a provider-level compliance rate as a proportion
of each provider’s eligible patients.

Statistical methods and analysis
Utilization rates
Utilization rates will be estimated for each provider for
every BE module component to which they apply (see
Table 1); these rates will be summarized across physi-
cians with 95% confidence intervals. To assess clinical
value, each patient will be classified as CW compliant or
not using the definition above; this indicator will be av-
eraged across patients within a provider to calculate a
provider-level compliance rate. These will also be sum-
marized with 95% confidence intervals. The pilot study
will provide critical estimates of utilization rates and clin-
ical outcomes, allowing for refinement of the clinical trial
design (Additional file 1). Specifically, following comple-
tion of the pilot study, the pruning decisions described
below can be made to eliminate less effective approaches
and guide future module development decisions.

Pilot phase qualitative user feedback
As outlined in Table 2, user feedback collected in the
pilot phase will be analyzed with both pragmatic and
academic goals. In order to maintain the timeline neces-
sary for iterative product development, all user feedback
will be summarized from researcher notes, providing
near real-time feedback for module development and it-
eration. Simultaneously, systematically collected user
feedback will be analyzed for more detailed usability
findings deemed valuable by the research team for mod-
ule implementation and academic dissemination using
Dedoose, a software package that can integrate tran-
scripts, pictures, memos, and other materials. Proce-
dures recommended by Patton and others that focus on
developing coding protocols to highlight issues, prob-
lems, and potential recommendations will be used [58].

Table 3 Patient population

Primary care and endocrine practices (N) 78

Demographics

% Black 15

% Hispanic 43

% Asian 9

% White 25

% Other 8

Patients ≥ 75 with diabetes 5187

Table 4 Choosing Wisely non-compliance categories

Measured HbA1c Patient category Current prescription

< 7 Healthy Non-metformin agent

< 7 Moderate comorbidity Non-metformin agent

< 7 Shorter life expectancy Non-metformin agent

7–7.5 Moderate comorbidity Non-metformin agent

7–7.5 Shorter life expectancy Non-metformin agent

7.5–8 Shorter life expectancy Non-metformin agent
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The goal of these analyses is to identify key barriers and
facilitators, as well as any emerging themes related to
the use of the BE-EHR module to influence provider ad-
herence to the CW guidelines.

Intervention pruning
We will apply mixed methods “pruning criteria” to elim-
inate less effective approaches. To address the evaluation
of individual components, utilization measures will be
assessed to determine the value of the tool for incorpor-
ation into the eventual BE-EHR module. If the CDS tool
is utilized in more than 30% of opportunities (e.g., if a
suggested default is accepted in more than 30% of cases),
then this tool will be retained in the module. While
there is no gold standard threshold for what a “useful”
CDS tool utilization rate should be, studies have noted
common CDS tools with utilization rates between 5 and
40% depending on the type of CDS and the risk of ignor-
ing it [59–61]. Furthermore, while low utilization rates
may prove clinically worthwhile in high-risk patient safety
situations, lower risk scenarios like the CW diabetes
guidelines for older adults dictate the need for a stronger
mean adoption rate [49]. Certain tools will not be evalu-
able with this criterion, for example, the effect of adjusting
the language on HbA1c lab reports. For these tools, quali-
tative user feedback during usability testing and brief in-
terviews with key informants during piloting will be used
to complement the utilization pruning criterion.

Scalability and dissemination
The finalized BE-EHR module will guide other EHR users
through a menu of customizable options that can switch
on (or off) various BE-derived CDS tools to replicate the
current intervention for improving clinician adherence to
diabetes management guidelines in older adults. Addition-
ally, to facilitate scalability and widespread dissemination,
the tools will follow standards-based development ap-
proaches, enabling widespread adoption across healthcare
systems and diverse EHR platforms. For information re-
garding other key components addressed in this study,
please consult the Additional file 1: SPIRIT Checklist.

Discussion
This study involves the development and pilot testing of
an innovative CDS tool, implementing behavioral eco-
nomic principles within the electronic health record to
promote clinician adherence to the CW guideline for
diabetes management in older adults. Interventions for
diabetes care in older adults have typically focused on
addressing under-treatment of hyperglycemia [62]; how-
ever, the intervention described presently focuses on a
system-wide approach to reduce risks resulting from
overtreatment of older adults with diabetes. Evidence
and lessons learned from this study can potentially inform

the design, testing, and implementation of similar inter-
ventions for other CW target conditions and beyond.

Novelty of combining behavioral economics with clinical
decision support tools
The incorporation of behavioral economic principles
into EHR clinical decision support tools shows promise
as a strategy to improve guideline adherence by address-
ing stubborn barriers, such as alert fatigue, that prevent
the CDS from having a desired impact on clinician be-
havior. The proposed BE-EHR module will serve as a
highly scalable platform for embedding a BE-based CDS
into any EHR system. More importantly, this module
can be easily applied to many other conditions in older
adults and other populations where combining BE with
EHR-based clinical decision support will be useful for
improving guideline adherence such as AGS CW recom-
mendations related to preventative screening procedures
(e.g., colonoscopies), or increasing compliance to to-
bacco cessation.
Unlike most new CDS systems, we anticipate that the

proposed BE-EHR module will have limited negative im-
pact on clinical workflow and cognitive load. BE tools
inherently bypass the central processing route that re-
quires clinicians to actively think about decision-making
[63]. Instead, these tools leverage the peripheral route,
which uses contextual cues and other influencing tools
to nudge clinicians to choose actions consistent with
stated guidelines.

Algorithm
While the present study aims to test the effectiveness of
behavioral economic principles in the EHR as they relate
to the overtreatment of elderly patients with diabetes,
central to the CDS is the logic and clinical decision-
making guided by the life expectancy algorithm and
corresponding HbA1c targets. Such a clinical decision
support tool currently does not exist within our vendor
EHR (Epic™), suggesting a possible future area for devel-
opment within the EHR. This life expectancy algorithm
could easily be applied to other alternatives to clinical
practice or additional CW guidelines as a tool to nudge
clinician behavior across a variety of medical concerns
affecting elderly adults.

Important role of behavioral economics in achieving user-
centered tools
Prior research, including that of the research team, show
the value of taking a user-centered approach to develop-
ment of decision support tools [41, 64, 65]. In doing so,
the appropriate behavioral economic principles can be
identified and strategies developed and deployed in a
way that is most likely to leverage the motivations and
workflows of end users (clinicians in the case of most
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CDS). Our multi-phased, mixed methods approach to de-
sign and user testing as well as multidisciplinary approach
as supported by our diverse team and key informants
(with expertise in behavioral economics, informatics, geri-
atrics, diabetes, social science, user research, and rigorous
evaluation of clinical interventions) enables the design of a
user-centered intervention more likely to achieve the
adoption necessary to impact clinical outcomes.

Limitations
As with any study design, there exist some limitations.
First, the sample size that would be required to ad-
equately power the present study is beyond the scope of
this work. Hence, results from this pilot study will influ-
ence the decision of whether to push forward with a
fully developed randomized controlled trial using only
those nudges that show promise. Furthermore, with the
incorporation of nudges (see Table 1) simultaneously
across the EHR, it will be challenging to determine
exactly which BE strategy or intervention has the stron-
gest impact. Care will be taken to perform statistical
analyses using adjustments and gathering summary sta-
tistics for different groups of nudges that are less likely
to co-occur. Furthermore, we will collect information
longitudinally to assess the order and timing with which
clinicians were exposed to various nudges. As a prag-
matic study, however, we are testing effectiveness in a
real-world setting, for which clinicians in practice will be
exposed to multiple nudges in combination or simultan-
eously, making the present design useful for assessing
the overall impact in the EHR.

Summary
In summary, the proposed research is a highly innova-
tive, multi-phase study to determine the feasibility and
impact of EHR-embedded BE approaches on provider
adherence to the CW guideline for older adults with dia-
betes. The resulting BE-EHR module will establish a
platform for exploring the ability of BE concepts embed-
ded within the EHR to affect guideline adherence for
other CW target areas. Moreover, it represents an excit-
ing new channel for influencing provider behavior
through less cognitively burdensome methods.
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